
Hardening Guide for Rancher 2.2.x with Kubernetes
1.13.x

Rancher v2.2.x

Version
0.2.0
-
August
2019

Overview

This document provides prescriptive guidance for hardening a production installation of
Rancher v2.2.x with Kubernetes v1.13. It outlines the configurations and controls required to
address Kubernetes benchmark controls from the Center for Information Security (CIS).

For more detail about evaluating a hardened cluster against the official CIS benchmark, refer
to the [CIS Benchmark Rancher Self-Assessment Guide - Rancher v2.2.x]({{< baseurl
>}}/rancher/v2.x/en/security/benchmark-2.2/).

Profile Definitions

The following profile definitions agree with the CIS benchmarks for Kubernetes.

A profile is a set of configurations that provide a certain amount of hardening. Generally, the
more hardened an environment is, the more it affects performance.

Level 1

Items in this profile intend to:

offer practical advice appropriate for the environment;
deliver an obvious security benefit; and
not alter the functionality or utility of the environment beyond an acceptable margin

Level 2

Items in this profile extend the “Level 1” profile and exhibit one or more of the following
characteristics:

are intended for use in environments or use cases where security is paramount
act as a defense in depth measure
may negatively impact the utility or performance of the technology

1.1 - Rancher HA Kubernetes cluster host
configuration

1.1.1 - Configure default sysctl settings on all hosts

Profile Applicability

Level 1

Description

Configure sysctl settings to match what the kubelet would set if allowed.

Rationale

We recommend that users launch the kubelet with the 	--protect-kernel-defaults	 option.
The settings that the kubelet initially attempts to change can be set manually.

This supports the following control:

2.1.7 - Ensure that the 	--protect-kernel-defaults	 argument is set to true (Scored)

Audit

Verify 	vm.overcommit_memory	=	1	

sysctl	vm.overcommit_memory

Verify 	kernel.panic	=	10	

sysctl	kernel.panic

Verify 	kernel.panic_on_oops	=	1	

sysctl	kernel.panic_on_oops

Remediation

Set the following parameters in 	/etc/sysctl.conf	 on all nodes:

vm.overcommit_memory=1
kernel.panic=10
kernel.panic_on_oops=1

Run 	sysctl	-p	 to enable the settings.

1.1.2 - Install the encryption provider configuration on all
control plane nodes

Profile Applicability

Level 1

Description

Create a Kubernetes encryption configuration file on each of the RKE nodes that will be
provisioned with the 	controlplane	 role:

NOTE: The 	--experimental-encryption-provider-config	 flag in Kubernetes 1.13+ is actually
	--encryption-provider-config	

Rationale

This configuration file will ensure that the Rancher RKE cluster encrypts secrets at rest, which
Kubernetes does not do by default.

This supports the following controls:

1.1.34 - Ensure that the 	--experimental-encryption-provider-config	 argument is set as
appropriate (Scored)
1.1.35 - Ensure that the encryption provider is set to 	aescbc	 (Scored)

Audit

On the control plane hosts for the Rancher HA cluster run:

stat	/etc/kubernetes/encryption.yaml

Ensure that:

The file is present
The file mode is 	0600	
The file owner is 	root:root	
The file contains:

apiVersion:	apiserver.config.k8s.io/v1
kind:	EncryptionConfiguration
resources:
		-	resources:
				-	secrets
				providers:
				-	aescbc:
								keys:
								-	name:	key1
										secret:	<32-byte	base64	encoded	string>
				-	identity:	{}

Where 	aescbc	 is the key type, and 	secret	 is populated with a 32-byte base64 encoded
string.

Remediation

Generate a key and an empty configuration file:

head	-c	32	/dev/urandom	|	base64	-i	-
touch	/etc/kubernetes/encryption.yaml

Set the file ownership to 	root:root	 and the permissions to 	0600	

chown	root:root	/etc/kubernetes/encryption.yaml
chmod	0600	/etc/kubernetes/encryption.yaml

Set the contents to:

apiVersion:	v1
kind:	EncryptionConfig
resources:

		-	resources:
				-	secrets
				providers:
				-	aescbc:
								keys:
								-	name:	key1
										secret:	<32-byte	base64	encoded	string>
				-	identity:	{}

Where 	secret	 is the 32-byte base64-encoded string generated in the first step.

1.1.3 - Install the audit log configuration on all control plane
nodes.

Profile Applicability

Level 1

Description

Place the configuration file for Kubernetes audit logging on each of the control plane nodes in
the cluster.

Rationale

The Kubernetes API has audit logging capability that is the best way to track actions in the
cluster.

This supports the following controls:

1.1.15 - Ensure that the 	--audit-log-path	 argument is set as appropriate (Scored)
1.1.16 - Ensure that the 	--audit-log-maxage	 argument is as appropriate (Scored)
1.1.17 - Ensure that the 	--audit-log-maxbackup	 argument is set as appropriate (Scored)
1.1.18 - Ensure that the 	--audit-log-maxsize	 argument is set as appropriate (Scored)
1.1.37 - Ensure that the 	AdvancedAuditing	 argument is not set to false (Scored)

Audit

On each control plane node, run:

stat	/etc/kubernetes/audit.yaml

Ensure that:

The file is present
The file mode is 	0600	
The file owner is 	root:root	
The file contains:

apiVersion:	audit.k8s.io/v1beta1
kind:	Policy
rules:
-	level:	Metadata

Remediation

On nodes with the 	controlplane	 role:

Generate an empty configuration file:

touch	/etc/kubernetes/audit.yaml

Set the file ownership to 	root:root	 and the permissions to 	0600	

chown	root:root	/etc/kubernetes/audit.yaml
chmod	0600	/etc/kubernetes/audit.yaml

Set the contents to:

apiVersion:	audit.k8s.io/v1beta1
kind:	Policy
rules:
-	level:	Metadata

1.1.4 - Place Kubernetes event limit configuration on each
control plane host

Profile Applicability

Level 1

Description

Place the configuration file for Kubernetes event limit configuration on each of the control
plane nodes in the cluster.

Rationale

Set up the 	EventRateLimit	 admission control plugin to prevent clients from overwhelming the
API server. The settings below are intended as an initial value and may need to be adjusted for
larger clusters.

This supports the following control:

1.1.36 - Ensure that the admission control plugin 	EventRateLimit	 is set (Scored)

Audit

On nodes with the 	controlplane	 role run:

stat	/etc/kubernetes/admission.yaml
stat	/etc/kubernetes/event.yaml

For each file, ensure that:

The file is present
The file mode is 	0600	
The file owner is 	root:root	

For 	admission.yaml	 ensure that the file contains:

apiVersion:	apiserver.k8s.io/v1alpha1
kind:	AdmissionConfiguration
plugins:
-	name:	EventRateLimit
		path:	/etc/kubernetes/event.yaml

For 	event.yaml	 ensure that the file contains:

apiVersion:	eventratelimit.admission.k8s.io/v1alpha1
kind:	Configuration
limits:
-	type:	Server
		qps:	5000
		burst:	20000

Remediation

On nodes with the 	controlplane	 role:

Generate an empty configuration file:

touch	/etc/kubernetes/admission.yaml
touch	/etc/kubernetes/event.yaml

Set the file ownership to 	root:root	 and the permissions to 	0600	

chown	root:root	/etc/kubernetes/admission.yaml
chown	root:root	/etc/kubernetes/event.yaml
chmod	0600	/etc/kubernetes/admission.yaml
chmod	0600	/etc/kubernetes/event.yaml

For 	admission.yaml	 set the contents to:

apiVersion:	apiserver.k8s.io/v1alpha1
kind:	AdmissionConfiguration
plugins:
-	name:	EventRateLimit
		path:	/etc/kubernetes/event.yaml

For 	event.yaml	 set the contents to:

apiVersion:	eventratelimit.admission.k8s.io/v1alpha1
kind:	Configuration
limits:
-	type:	Server
		qps:	5000
		burst:	20000

2.1 - Rancher HA Kubernetes Cluster Configuration via
RKE

(See Appendix A. for full RKE 	cluster.yml	 example)

2.1.1 - Configure kubelet options

Profile Applicability

Level 1

Description

Ensure Kubelet options are configured to match CIS controls.

Rationale

To pass the following controls in the CIS benchmark, ensure the appropriate flags are passed
to the Kubelet.

2.1.1 - Ensure that the 	--anonymous-auth	 argument is set to false (Scored)
2.1.2 - Ensure that the 	--authorization-mode	 argument is not set to 	AlwaysAllow	
(Scored)
2.1.6 - Ensure that the 	--streaming-connection-idle-timeout	 argument is not set to 0
(Scored)
2.1.7 - Ensure that the 	--protect-kernel-defaults	 argument is set to true (Scored)
2.1.8 - Ensure that the 	--make-iptables-util-chains	 argument is set to true (Scored)
2.1.10 - Ensure that the 	--event-qps	 argument is set to 0 (Scored)
2.1.13 - Ensure that the 	RotateKubeletServerCertificate	 argument is set to true
(Scored)
2.1.14 - Ensure that the Kubelet only makes use of Strong Cryptographic Ciphers (Not
Scored)

Audit

Inspect the Kubelet containers on all hosts and verify that they are running with the following
options:

	--streaming-connection-idle-timeout=<duration	greater	than	0>	

	--authorization-mode=Webhook	

	--protect-kernel-defaults=false	

	--make-iptables-util-chains=false	

	--event-qps=0	

	--anonymous-auth=false	

	--feature-gates="RotateKubeletServerCertificate=true"	

	--tls-cipher-

suites="TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SH

A256,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS

_RSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_128_GCM_SHA256"	

Remediation

Add the following to the RKE 	cluster.yml	 kubelet section under 	services	:

services:
		kubelet:
				extra_args:
						authorization-mode:	"Webhook"
						streaming-connection-idle-timeout:	"<duration>"
						protect-kernel-defaults:	"true"
						make-iptables-util-chains:	"true"
						event-qps:	"0"
						anonymous-auth:	"false"
						feature-gates:	"RotateKubeletServerCertificate=true"
						tls-cipher-suites:	"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_128_GCM_SHA256"

Where 	<duration>	 is in a form like 	1800s	.

Reconfigure the cluster:

rke	up	--config	cluster.yml

2.1.2 - Configure kube-api options

Profile Applicability

Level 1

Description

Ensure the RKE configuration is set to deploy the 	kube-api	 service with the options required

for controls.

NOTE:

Enabling the 	AlwaysPullImages	 admission control plugin can cause degraded performance
due to overhead of always pulling images.
Enabling the 	DenyEscalatingExec	 admission control plugin will prevent the 'Launch kubectl'
functionality in the UI from working.

Rationale

To pass the following controls for the kube-api server ensure RKE configuration passes the
appropriate options.

1.1.1 - Ensure that the 	--anonymous-auth	 argument is set to false (Scored)
1.1.8 - Ensure that the 	--profiling	argument	 is set to false (Scored)
1.1.11 - Ensure that the admission control plugin 	AlwaysPullImages	 is set (Scored)
1.1.12 - Ensure that the admission control plugin 	DenyEscalatingExec	 is set (Scored)
1.1.14 - Ensure that the admission control plugin 	NamespaceLifecycle	 is set (Scored)
1.1.15 - Ensure that the 	--audit-log-path	 argument is set as appropriate (Scored)
1.1.16 - Ensure that the 	--audit-log-maxage	 argument is set as appropriate (Scored)
1.1.17 - Ensure that the 	--audit-log-maxbackup	 argument is set as appropriate (Scored)
1.1.18 - Ensure that the 	--audit-log-maxsize	 argument is set as appropriate (Scored)
1.1.23 - Ensure that the 	--service-account-lookup	 argument is set to true (Scored)
1.1.24 - Ensure that the admission control plugin 	PodSecurityPolicy	 is set (Scored)
1.1.30 Ensure that the API Server only makes use of Strong Cryptographic Ciphers (Not
Scored)
1.1.34 - Ensure that the 	--experimental-encryption-provider-config	 argument is set as
appropriate (Scored)
1.1.35 - Ensure that the encryption provider is set to 	aescbc	 (Scored)
1.1.36 - Ensure that the admission control plugin 	EventRateLimit	 is set (Scored)
1.1.37 - Ensure that the 	AdvancedAuditing	 argument is not set to 	false	 (Scored)

Audit

On nodes with the 	controlplane	 role inspect the 	kube-apiserver	 containers:

		docker	inspect	kube-apiserver

Look for the following options in the command section of the output:

--anonymous-auth=false
--profiling=false
--service-account-lookup=true
--enable-admission-plugins=	"ServiceAccount,NamespaceLifecycle,LimitRanger,PersistentVolumeLabel,DefaultStorageClass,ResourceQuota,DefaultTolerationSeconds,AlwaysPullImages,DenyEscalatingExec,NodeRestriction,EventRateLimit,PodSecurityPolicy"
--encryption-provider-config=/etc/kubernetes/encryption.yaml
--admission-control-config-file=/etc/kubernetes/admission.yaml
--audit-log-path=/var/log/kube-audit/audit-log.json
--audit-log-maxage=5
--audit-log-maxbackup=5
--audit-log-maxsize=100
--audit-log-format=json
--audit-policy-file=/etc/kubernetes/audit.yaml
--tls-cipher-suites:	"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_128_GCM_SHA256"

In the 	volume	 section of the output ensure the bind mount is present:

/var/log/kube-audit:/var/log/kube-audit

Remediation

In the RKE 	cluster.yml	 add the following directives to the 	kube-api	 section under
	services	:

services:
		kube-api:
				pod_security_policy:	true
				extra_args:
						anonymous-auth:	"false"
						profiling:	"false"
						service-account-lookup:	"true"
						enable-admission-plugins:	"ServiceAccount,NamespaceLifecycle,LimitRanger,PersistentVolumeLabel,DefaultStorageClass,ResourceQuota,DefaultTolerationSeconds,AlwaysPullImages,DenyEscalatingExec,NodeRestriction,EventRateLimit,PodSecurityPolicy"
						encryption-provider-config:	/etc/kubernetes/encryption.yaml
						admission-control-config-file:	"/etc/kubernetes/admission.yaml"
						audit-log-path:	"/var/log/kube-audit/audit-log.json"
						audit-log-maxage:	"5"
						audit-log-maxbackup:	"5"
						audit-log-maxsize:	"100"
						audit-log-format:	"json"
						audit-policy-file:	/etc/kubernetes/audit.yaml
						tls-cipher-suites:	"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_128_GCM_SHA256"
				extra_binds:
						-	"/var/log/kube-audit:/var/log/kube-audit"

Reconfigure the cluster:

rke	up	--config	cluster.yml

2.1.3 - Configure scheduler options

Profile Applicability

Level 1

Description

Set the appropriate options for the Kubernetes scheduling service.

NOTE: Setting 	--address	 to 	127.0.0.1	 will prevent Rancher cluster monitoring from
scraping this endpoint.

Rationale

To address the following controls on the CIS benchmark, the command line options should be
set on the Kubernetes scheduler.

1.2.1 - Ensure that the 	--profiling	 argument is set to 	false	 (Scored)
1.2.2 - Ensure that the 	--address	 argument is set to 	127.0.0.1	 (Scored)

Audit

On nodes with the 	controlplane	 role: inspect the 	kube-scheduler	 containers:

docker	inspect	kube-scheduler

Verify the following options are set in the 	command	 section.

--profiling=false
--address=127.0.0.1

Remediation

In the RKE 	cluster.yml	 file ensure the following options are set:

services:
		…
		scheduler:
				extra_args:
				profiling:	"false"
				address:	"127.0.0.1"

Reconfigure the cluster:

rke	up	--config	cluster.yml

2.1.4 - Configure controller options

Profile Applicability

Level 1

Description

Set the appropriate arguments on the Kubernetes controller manager.

NOTE: Setting 	--address	 to 	127.0.0.1	 will prevent Rancher cluster monitoring from
scraping this endpoint.

Rationale

To address the following controls the options need to be passed to the Kubernetes controller
manager.

1.3.1 - Ensure that the 	--terminated-pod-gc-threshold	 argument is set as appropriate
(Scored)
1.3.2 - Ensure that the 	--profiling	 argument is set to false (Scored)
1.3.6 Ensure that the RotateKubeletServerCertificate argument is set to true (Scored)
1.3.7 - Ensure that the 	--address	 argument is set to 127.0.0.1 (Scored)

Audit

On nodes with the 	controlplane	 role inspect the 	kube-controller-manager	 container:

docker	inspect	kube-controller-manager

Verify the following options are set in the 	command	 section:

--terminated-pod-gc-threshold=1000
--profiling=false
--address=127.0.0.1
--feature-gates="RotateKubeletServerCertificate=true"

Remediation

In the RKE 	cluster.yml	 file ensure the following options are set:

services:
		kube-controller:
				extra_args:
						profiling:	"false"
						address:	"127.0.0.1"
						terminated-pod-gc-threshold:	"1000"
						feature-gates:	"RotateKubeletServerCertificate=true"

Reconfigure the cluster:

rke	up	--config	cluster.yml

2.1.5 - Configure addons and PSPs

Profile Applicability

Level 1

Description

Configure a restrictive pod security policy (PSP) as the default and create role bindings for
system level services to use the less restrictive default PSP.

Rationale

To address the following controls, a restrictive default PSP needs to be applied as the default.
Role bindings need to be in place to allow system services to still function.

1.7.1 - Do not admit privileged containers (Not Scored)

1.7.2 - Do not admit containers wishing to share the host process ID namespace (Not
Scored)
1.7.3 - Do not admit containers wishing to share the host IPC namespace (Not Scored)
1.7.4 - Do not admit containers wishing to share the host network namespace (Not
Scored)
1.7.5 - Do not admit containers with 	allowPrivilegeEscalation	 (Not Scored)
1.7.6 - Do not admit root containers (Not Scored)
1.7.7 - Do not admit containers with dangerous capabilities (Not Scored)

Audit

Verify that the 	cattle-system	 namespace exists:

kubectl	get	ns	|grep	cattle

Verify that the roles exist:

kubectl	get	role	default-psp-role	-n	ingress-nginx
kubectl	get	role	default-psp-role	-n	cattle-system
kubectl	get	clusterrole	psp:restricted

Verify the bindings are set correctly:

kubectl	get	rolebinding	-n	ingress-nginx	default-psp-rolebinding
kubectl	get	rolebinding	-n	cattle-system	default-psp-rolebinding
kubectl	get	clusterrolebinding	psp:restricted

Verify the restricted PSP is present.

kubectl	get	psp	restricted

Remediation

In the RKE 	cluster.yml	 file ensure the following options are set:

addons:	|
		apiVersion:	rbac.authorization.k8s.io/v1

		kind:	Role
		metadata:
				name:	default-psp-role
				namespace:	ingress-nginx
		rules:
		-	apiGroups:
				-	extensions
				resourceNames:
				-	default-psp
				resources:
				-	podsecuritypolicies
				verbs:
				-	use

		apiVersion:	rbac.authorization.k8s.io/v1
		kind:	RoleBinding
		metadata:
				name:	default-psp-rolebinding
				namespace:	ingress-nginx
		roleRef:
				apiGroup:	rbac.authorization.k8s.io
				kind:	Role
				name:	default-psp-role
		subjects:
		-	apiGroup:	rbac.authorization.k8s.io
				kind:	Group
				name:	system:serviceaccounts
		-	apiGroup:	rbac.authorization.k8s.io
				kind:	Group
				name:	system:authenticated

		apiVersion:	v1
		kind:	Namespace
		metadata:
				name:	cattle-system

		apiVersion:	rbac.authorization.k8s.io/v1
		kind:	Role
		metadata:
				name:	default-psp-role
				namespace:	cattle-system
		rules:
		-	apiGroups:
				-	extensions
				resourceNames:
				-	default-psp
				resources:
				-	podsecuritypolicies
				verbs:
				-	use

		apiVersion:	rbac.authorization.k8s.io/v1
		kind:	RoleBinding
		metadata:
				name:	default-psp-rolebinding
				namespace:	cattle-system

		roleRef:
				apiGroup:	rbac.authorization.k8s.io
				kind:	Role
				name:	default-psp-role
		subjects:
		-	apiGroup:	rbac.authorization.k8s.io
				kind:	Group
				name:	system:serviceaccounts
		-	apiGroup:	rbac.authorization.k8s.io
				kind:	Group
				name:	system:authenticated

		apiVersion:	extensions/v1beta1
		kind:	PodSecurityPolicy
		metadata:
				name:	restricted
		spec:
				requiredDropCapabilities:
				-	NET_RAW
				privileged:	false
				allowPrivilegeEscalation:	false
				defaultAllowPrivilegeEscalation:	false
				fsGroup:
						rule:	RunAsAny
				runAsUser:
						rule:	MustRunAsNonRoot
				seLinux:
						rule:	RunAsAny
				supplementalGroups:
						rule:	RunAsAny
				volumes:
				-	emptyDir
				-	secret
				-	persistentVolumeClaim
				-	downwardAPI
				-	configMap
				-	projected

		apiVersion:	rbac.authorization.k8s.io/v1
		kind:	ClusterRole
		metadata:
				name:	psp:restricted
		rules:
		-	apiGroups:
				-	extensions
				resourceNames:
				-	restricted
				resources:
				-	podsecuritypolicies
				verbs:
				-	use

		apiVersion:	rbac.authorization.k8s.io/v1
		kind:	ClusterRoleBinding
		metadata:
				name:	psp:restricted

		roleRef:
				apiGroup:	rbac.authorization.k8s.io
				kind:	ClusterRole
				name:	psp:restricted
		subjects:
		-	apiGroup:	rbac.authorization.k8s.io
				kind:	Group
				name:	system:serviceaccounts
		-	apiGroup:	rbac.authorization.k8s.io
				kind:	Group
				name:	system:authenticated

Reconfigure the cluster:

rke	up	--config	cluster.yml

3.1 - Rancher Management Control Plane Installation

3.1.1 - Disable the local cluster option

Profile Applicability

Level 2

Description

When deploying Rancher, disable the local cluster option on the Rancher Server.

NOTE: This requires Rancher v2.1.2 or above.

Rationale

Having access to the local cluster from the Rancher UI is convenient for troubleshooting and
debugging; however, if the local cluster is enabled in the Rancher UI, a user has access to all
elements of the system, including the Rancher management server itself. Disabling the local
cluster is a defense in depth measure and removes the possible attack vector from the
Rancher UI and API.

Audit

Verify the Rancher deployment has the 	--add-local=false	 option set.

kubectl	get	deployment	rancher	-n	cattle-system	-o	yaml	|grep	'add-local'

In the Rancher UI go to Clusters in the Global view and verify that no 	local	 cluster is
present.

Remediation

While upgrading or installing Rancher 2.2.x, provide the following flag:

--set	addLocal="false"

3.1.2 - Enable Rancher Audit logging

Profile Applicability

Level 1

Description

Enable Rancher’s built-in audit logging capability.

Rationale

Tracking down what actions were performed by users in Rancher can provide insight during
post mortems, and if monitored proactively can be used to quickly detect malicious actions.

Audit

Verify that the audit log parameters were passed into the Rancher deployment.

kubectl	get	deployment	rancher	-n	cattle-system	-o	yaml	|	grep	auditLog

Verify that the log is going to the appropriate destination, as set by
	auditLog.destination	

	sidecar	:

i. List pods:

kubectl	get	pods	-n	cattle-system

ii. Tail logs:

kubectl	logs	<pod>	-n	cattle-system	-c	rancher-audit-log

	hostPath	

i. On the worker nodes running the Rancher pods, verify that the log files are being
written to the destination indicated in 	auditlog.hostPath	.

Remediation

Upgrade the Rancher server installation using Helm, and configure the audit log settings. The
instructions for doing so can be found in the reference section below.

Reference

https://rancher.com/docs/rancher/v2.x/en/installation/ha/helm-rancher/chart-
options/#advanced-options

3.2 - Rancher Management Control Plane
Authentication

3.2.1 - Change the local admin password from the default
value

Profile Applicability

Level 1

Description

The local admin password should be changed from the default.

Rationale

The default admin password is common across all Rancher installations and should be
changed immediately upon startup.

https://rancher.com/docs/rancher/v2.x/en/installation/ha/helm-rancher/chart-options/#advanced-options

Audit

Attempt to login into the UI with the following credentials:

Username: admin
Password: admin

The login attempt must not succeed.

Remediation

Change the password from 	admin	 to a password that meets the recommended password
standards for your organization.

3.2.2 - Configure an Identity Provider for Authentication

Profile Applicability

Level 1

Description

When running Rancher in a production environment, configure an identity provider for
authentication.

Rationale

Rancher supports several authentication backends that are common in enterprises. It is
recommended to tie Rancher into an external authentication system to simplify user and group
access in the Rancher cluster. Doing so assures that access control follows the organization's
change management process for user accounts.

Audit

In the Rancher UI, select Global
Select Security
Select Authentication
Ensure the authentication provider for your environment is active and configured correctly

Remediation

Configure the appropriate authentication provider for your Rancher installation according to
the documentation found at the link in the reference section below.

Reference

https://rancher.com/docs/rancher/v2.x/en/admin-settings/authentication/

3.3 - Rancher Management Control Plane RBAC

3.3.1 - Ensure that administrator privileges are only granted
to those who require them

Profile Applicability

Level 1

Description

Restrict administrator access to only those responsible for managing and operating the
Rancher server.

Rationale

The 	admin	 privilege level gives the user the highest level of access to the Rancher server and
all attached clusters. This privilege should only be granted to a few people who are
responsible for the availability and support of Rancher and the clusters that it manages.

Audit

The following script uses the Rancher API to show users with administrator privileges:

#!/bin/bash
for	i	in	$(curl	-sk	-u	'token-<id>:<secret>'	https://<RANCHER_URL>/v3/users|jq	-r	.data[].links.globalRoleBindings);	

curl	-sk	-u	'token-<id>:<secret>'	$i|	jq	'.data[]	|	"\(.userId)	\(.globalRoleId)"'

done

The 	admin	 role should only be assigned to users that require administrative privileges. Any
role that is not 	admin	 or 	user	 should be audited in the RBAC section of the UI to ensure that
the privileges adhere to policies for global access.

The Rancher server permits customization of the default global permissions. We recommend

https://rancher.com/docs/rancher/v2.x/en/admin-settings/authentication/

that auditors also review the policies of any custom global roles.

Remediation

Remove the 	admin	 role from any user that does not require administrative privileges.

3.4 - Rancher Management Control Plane
Configuration

3.4.1 - Ensure only approved node drivers are active

Profile Applicability

Level 1

Description

Ensure that node drivers that are not needed or approved are not active in the Rancher
console.

Rationale

Node drivers are used to provision compute nodes in various cloud providers and local IaaS
infrastructure. For convenience, popular cloud providers are enabled by default. If the
organization does not intend to use these or does not allow users to provision resources in
certain providers, the drivers should be disabled. This will prevent users from using Rancher
resources to provision the nodes.

Audit

In the Rancher UI select Global
Select Node
Drivers
Review the list of node drivers that are in an Active state.

Remediation

If a disallowed node driver is active, visit the Node
Drivers page under Global and disable it.

Appendix A - Complete RKE 	cluster.yml	 Example

nodes:
-	address:	18.191.190.205
		internal_address:	172.31.24.213
		user:	ubuntu
		role:	["controlplane",	"etcd",	"worker"]
-	address:	18.191.190.203
		internal_address:	172.31.24.203
		user:	ubuntu
		role:	["controlplane",	"etcd",	"worker"]
-	address:	18.191.190.10
		internal_address:	172.31.24.244
		user:	ubuntu
		role:	["controlplane",	"etcd",	"worker"]

services:
		kubelet:
				extra_args:
						streaming-connection-idle-timeout:	"1800s"
						authorization-mode:	"Webhook"
						protect-kernel-defaults:	"true"
						make-iptables-util-chains:	"true"
						event-qps:	"0"
						anonymous-auth:	"false"
						feature-gates:	"RotateKubeletServerCertificate=true"
						tls-cipher-suites:	"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_128_GCM_SHA256"
		kube-api:
				pod_security_policy:	true
				extra_args:
						anonymous-auth:	"false"
						profiling:	"false"
						service-account-lookup:	"true"
						enable-admission-plugins:	"ServiceAccount,NamespaceLifecycle,LimitRanger,PersistentVolumeLabel,DefaultStorageClass,ResourceQuota,DefaultTolerationSeconds,AlwaysPullImages,DenyEscalatingExec,NodeRestriction,EventRateLimit,PodSecurityPolicy"
						encryption-provider-config:	/etc/kubernetes/encryption.yaml
						admission-control-config-file:	"/etc/kubernetes/admission.yaml"
						audit-log-path:	"/var/log/kube-audit/audit-log.json"
						audit-log-maxage:	"5"
						audit-log-maxbackup:	"5"
						audit-log-maxsize:	"100"
						audit-log-format:	"json"
						audit-policy-file:	/etc/kubernetes/audit.yaml
						tls-cipher-suites:	"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_128_GCM_SHA256"
				extra_binds:
						-	"/var/log/kube-audit:/var/log/kube-audit"
		scheduler:
				extra_args:
						profiling:	"false"
						address:	"127.0.0.1"
		kube-controller:
				extra_args:
						profiling:	"false"
						address:	"127.0.0.1"
						terminated-pod-gc-threshold:	"1000"
						feature-gates:	"RotateKubeletServerCertificate=true"
addons:	|

		apiVersion:	v1
		kind:	Namespace
		metadata:
				name:	ingress-nginx

		apiVersion:	rbac.authorization.k8s.io/v1
		kind:	Role
		metadata:
				name:	default-psp-role
				namespace:	ingress-nginx
		rules:
		-	apiGroups:
				-	extensions
				resourceNames:
				-	default-psp
				resources:
				-	podsecuritypolicies
				verbs:
				-	use

		apiVersion:	rbac.authorization.k8s.io/v1
		kind:	RoleBinding
		metadata:
				name:	default-psp-rolebinding
				namespace:	ingress-nginx
		roleRef:
				apiGroup:	rbac.authorization.k8s.io
				kind:	Role
				name:	default-psp-role
		subjects:
		-	apiGroup:	rbac.authorization.k8s.io
				kind:	Group
				name:	system:serviceaccounts
		-	apiGroup:	rbac.authorization.k8s.io
				kind:	Group
				name:	system:authenticated

		apiVersion:	v1
		kind:	Namespace
		metadata:
				name:	cattle-system

		apiVersion:	rbac.authorization.k8s.io/v1
		kind:	Role
		metadata:
				name:	default-psp-role
				namespace:	cattle-system
		rules:
		-	apiGroups:
				-	extensions
				resourceNames:
				-	default-psp
				resources:
				-	podsecuritypolicies
				verbs:
				-	use

		apiVersion:	rbac.authorization.k8s.io/v1
		kind:	RoleBinding
		metadata:
				name:	default-psp-rolebinding
				namespace:	cattle-system
		roleRef:
				apiGroup:	rbac.authorization.k8s.io
				kind:	Role
				name:	default-psp-role
		subjects:
		-	apiGroup:	rbac.authorization.k8s.io
				kind:	Group
				name:	system:serviceaccounts
		-	apiGroup:	rbac.authorization.k8s.io
				kind:	Group
				name:	system:authenticated

		apiVersion:	extensions/v1beta1
		kind:	PodSecurityPolicy
		metadata:
				name:	restricted
		spec:
				requiredDropCapabilities:
				-	NET_RAW
				privileged:	false
				allowPrivilegeEscalation:	false
				defaultAllowPrivilegeEscalation:	false
				fsGroup:
						rule:	RunAsAny
				runAsUser:
						rule:	MustRunAsNonRoot
				seLinux:
						rule:	RunAsAny
				supplementalGroups:
						rule:	RunAsAny
				volumes:
				-	emptyDir
				-	secret
				-	persistentVolumeClaim
				-	downwardAPI
				-	configMap
				-	projected

		apiVersion:	rbac.authorization.k8s.io/v1
		kind:	ClusterRole
		metadata:
				name:	psp:restricted
		rules:
		-	apiGroups:
				-	extensions
				resourceNames:
				-	restricted
				resources:
				-	podsecuritypolicies
				verbs:

				-	use

		apiVersion:	rbac.authorization.k8s.io/v1
		kind:	ClusterRoleBinding
		metadata:
				name:	psp:restricted
		roleRef:
				apiGroup:	rbac.authorization.k8s.io
				kind:	ClusterRole
				name:	psp:restricted
		subjects:
		-	apiGroup:	rbac.authorization.k8s.io
				kind:	Group
				name:	system:serviceaccounts
		-	apiGroup:	rbac.authorization.k8s.io
				kind:	Group
				name:	system:authenticated

